6 research outputs found

    A multi-biometric iris recognition system based on a deep learning approach

    Get PDF
    YesMultimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability to spoofing. In this paper, an efficient and real-time multimodal biometric system is proposed based on building deep learning representations for images of both the right and left irises of a person, and fusing the results obtained using a ranking-level fusion method. The trained deep learning system proposed is called IrisConvNet whose architecture is based on a combination of Convolutional Neural Network (CNN) and Softmax classifier to extract discriminative features from the input image without any domain knowledge where the input image represents the localized iris region and then classify it into one of N classes. In this work, a discriminative CNN training scheme based on a combination of back-propagation algorithm and mini-batch AdaGrad optimization method is proposed for weights updating and learning rate adaptation, respectively. In addition, other training strategies (e.g., dropout method, data augmentation) are also proposed in order to evaluate different CNN architectures. The performance of the proposed system is tested on three public datasets collected under different conditions: SDUMLA-HMT, CASIA-Iris- V3 Interval and IITD iris databases. The results obtained from the proposed system outperform other state-of-the-art of approaches (e.g., Wavelet transform, Scattering transform, Local Binary Pattern and PCA) by achieving a Rank-1 identification rate of 100% on all the employed databases and a recognition time less than one second per person

    Fast Iris Segmentation Algorithm for Visible Wavelength Images Based on Multi-color Space

    No full text
    Iris recognition for eye images acquired in visible wavelength is receiving increasing attention. In visible wavelength environments, there are many factors that may cover or affect the iris region which makes the iris segmentation step more difficult and challenging. In this paper, we propose a novel and fast segmentation algorithm to deal with eye images acquired in visible wavelength environments by considering the color information form multiple color spaces. The various existing color spaces such as RGB, YCbCr, and HSV are analyzed and an appropriate set of color models is selected for the segmentation process. To accurately localize the iris region, a set of convenient techniques are applied to detect and remove the non-iris regions such as pupil, specular reflection, eyelids, and eyelashes. Our experimental results and comparative analysis using the UBIRIS v2 database demonstrate the efficiency of our approach in terms of segmentation accuracy and execution time
    corecore